Transforming Growth Factor β Drives Hemogenic Endothelium Programming and the Transition to Hematopoietic Stem Cells
نویسندگان
چکیده
Hematopoietic stem cells (HSCs) are self-renewing multipotent stem cells that generate mature blood lineages throughout life. They, together with hematopoietic progenitor cells (collectively known as HSPCs), emerge from hemogenic endothelium in the floor of the embryonic dorsal aorta by an endothelial-to-hematopoietic transition (EHT). Here we demonstrate that transforming growth factor β (TGFβ) is required for HSPC specification and that it regulates the expression of the Notch ligand Jagged1a in endothelial cells prior to EHT, in a striking parallel with the epithelial-to-mesenchymal transition (EMT). The requirement for TGFβ is two fold and sequential: autocrine via Tgfβ1a and Tgfβ1b produced in the endothelial cells themselves, followed by a paracrine input of Tgfβ3 from the notochord, suggesting that the former programs the hemogenic endothelium and the latter drives EHT. Our findings have important implications for the generation of HSPCs from pluripotent cells in vitro.
منابع مشابه
Lack of Phenotypical and Morphological Evidences of Endothelial to Hematopoietic Transition in the Murine Embryonic Head during Hematopoietic Stem Cell Emergence
During mouse ontogeny, hematopoietic cells arise from specialized endothelial cells, i.e., the hemogenic endothelium, and form clusters in the lumen of arterial vessels. Hemogenic endothelial cells have been observed in several embryonic tissues, such as the dorsal aorta, the placenta and the yolk sac. Recent work suggests that the mouse embryonic head also produces hematopoietic stem cells (HS...
متن کاملHemogenic endothelium specification and hematopoietic stem cell maintenance employ distinct Scl isoforms.
Recent studies have shown that nascent hematopoietic stem cells (HSCs) derive directly from the ventral aortic endothelium (VAE) via endothelial to hematopoietic transition (EHT). However, whether EHT initiates from a random or predetermined subpopulation of VAE, as well as the molecular mechanism underlying this process, remain unclear. We previously reported that different zebrafish stem cell...
متن کاملEndoglin potentiates nitric oxide synthesis to enhance definitive hematopoiesis
During embryonic development, hematopoietic cells develop by a process of endothelial-to hematopoietic transition of a specialized population of endothelial cells. These hemogenic endothelium (HE) cells in turn develop from a primitive population of FLK1(+) mesodermal cells. Endoglin (ENG) is an accessory TGF-β receptor that is enriched on the surface of endothelial and hematopoietic stem cells...
متن کاملBio11494 1..11
During embryonic development, hematopoietic cells develop by a process of endothelial-to hematopoietic transition of a specialized population of endothelial cells. These hemogenic endothelium (HE) cells in turn develop from a primitive population of FLK1 mesodermal cells. Endoglin (ENG) is an accessory TGF-β receptor that is enriched on the surface of endothelial and hematopoietic stem cells an...
متن کاملBio11494 819..829
During embryonic development, hematopoietic cells develop by a process of endothelial-to hematopoietic transition of a specialized population of endothelial cells. These hemogenic endothelium (HE) cells in turn develop from a primitive population of FLK1 mesodermal cells. Endoglin (ENG) is an accessory TGF-β receptor that is enriched on the surface of endothelial and hematopoietic stem cells an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 38 شماره
صفحات -
تاریخ انتشار 2016